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Neurons are subject to synaptic inputs from many other cells. These inputs consist of spikes changing the
conductivity of the target cell, i.e., they enter the neural dynamics as multiplicative shot noise. Up to now, only
for simplified models like current-based �additive-noise� point neurons or models with Gaussian white-noise
input, exact solutions are available. We present a method to calculate the exact time-dependent moments for the
voltage of a point neuron with conductance-based shot noise and a passive membrane. The exact solutions
show features �for instance, maxima of the moments vs time� which are also confirmed by numerical simula-
tions. The theoretical analysis of subthreshold membrane fluctuations may contribute to a better comprehension
of neural noise in general. We also discuss how the analytical results may provide additional conditions for
estimating parameters from experimental data.
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I. INTRODUCTION

Neurons receive action potentials from many other cells.
The timing of these input spikes appears in many cases to be
rather irregular and can thus be described by a stochastic
point process. This stream of input spikes called shot noise
does not only lead to irregular spiking of the target neuron
but also results in stochastic fluctuations of the subthreshold
membrane voltage �i.e., below the threshold for generation of
action potentials�. From the statistics of these subthreshold
fluctuations, one can obtain valuable information about the
network and the synaptic dynamics �see, for instance, �1��, if
a good theoretical description of the underlying dynamics is
available. Moreover, a theoretical examination of the sto-
chastic subthreshold behavior of neurons can help one to
understand aspects of information processing in neurons.

For the last 50 years, many models for the subthreshold
behavior of neurons have been studied. They cover a wide
range from biophysically realistic multicompartment models
�see, e.g., �2��, which incorporate many types of synapses
and their distribution over the dendrite to very simple point
neurons with voltage-independent additive Gaussian white
noise �see, e.g., �3��. The model considered here lies some-
where in between. It is a shot-noise-driven passive �i.e., non-
spiking� point neuron, which is described by the current-
balance equation for a leaky capacitor and some fluctuating
conductances �4�. The conductances are modeled by a linear
filter equation with additive shot noise �throughout this pa-
per, we mean by shot noise, the train of input delta spikes�.
Thus, one has to deal with a set of coupled differential equa-
tions driven by a multiplicative colored noise with non-
Gaussian statistics. Even though this model is quite intuitive,
the evaluation of the resulting equations is nontrivial. Up to
now several groups have worked on approximations of this
process, e.g., the diffusion approximation �see, e.g., �3,5–8��
and the effective time-constant approximation �ECA� �9,10�.
A perturbation result �valid for small shot-noise amplitude�
beyond the diffusion approximation and the ECA for steady-
state densities and moments was recently presented by Rich-
ardson and Gerstner �11� �this paper also gives a comprehen-

sive review on both diffusion approximation and ECA�. So
far, no exact results for this dynamics have been obtained.

The subthreshold activity can be measured experimentally
in vivo and in vitro �see, e.g., �12,13�� in a standard proce-
dure. One crude way to obtain the subthreshold fluctuations
from measured trajectories is to cut the spikes generated by
the neuron out of the voltage trace. Closer to what we are
studying here are experiments in which the cell is hyperpo-
larized by a negative current and synaptic input is weak; the
membrane is largely passive and does not generate action
potentials.

In this paper, we propose a method which allows for the
exact calculation of arbitrary n-time moments for the full
problem, if the characteristic or the generating functional of
the input noise is known. We show that the time-dependent
moments �including also the voltage’s autocorrelation func-
tion� can be expressed by the generating functional of the
shot noise. The test function appearing in this functional de-
pends on the synaptic filter dynamics. The resulting expres-
sions for the moments can be evaluated in a lengthy but
straightforward calculation.

As an application of this method, we calculate the mean
value of the fluctuations for excitatory Poissonian input noise
filtered by the synaptic dynamics. The variance and correla-
tion function is discussed elsewhere.

This paper is organized as follows. In Sec. I A, we intro-
duce the model. Some statistical quantities of interest are
introduced in Sec. I B. In Sec. I C, we discuss some approxi-
mations of this model and their drawbacks. In the next two
sections �Secs. II A and II B�, we derive the formulas for the
exact moments and we give a simple example in Sec. III. For
this example, the limit of vanishing synaptic time scale is
discussed in Sec. III B and conditions for a nonmonotonic
time course of the mean are derived in Sec. III C. Finally, in
Sec. III D, we compare the exact solutions to results of nu-
merical simulations of the full problem. Our results are sum-
marized and discussed in Sec. IV.

A. Model

We consider a shot-noise-driven passive point neuron as
proposed by Stein �4�. The excitatory and inhibitory conduc-
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tances are modeled by linearly filtered shot noise. This linear
filter was used by Brunel and Sergi �14� for an additive dy-
namics and by Richardson and Gerstner �11� for a conduc-
tance �multiplicative� input, both for Poissonian shot noise.
A similar model with unfiltered multiplicative Poissonian
shot-noise input has been treated in �15�. In contrast to the
previous works we do not make assumptions about the sta-
tistics of the shot noise except for its stationarity. The equa-
tions for the model considered here read

C
dV

dt
= − �V − EL�gL − �V − Ee�ge�t� − �V − Ei�gi�t� + Iapp,

�1�

�e,i
dge,i

dt
= − ge,i + ce,i�e,i �

�tke,i
�
��t − tke,i

� , �2�

where C and gL are the capacitance and the leakage conduc-
tance of the membrane, respectively, ge and gi are the exci-
tatory and inhibitory fluctuating input conductances, respec-
tively, and �e,i and Ee,i are the respective time constants and
reversal potentials, respectively. The parameters ce and ci
determine the strength of the noise pulses, arriving at ran-
domly distributed times tke,i

. We include an external current,
represented by Iapp. The fluctuating conductances should be
considered as the sum over all respective ion channel con-
ductances and are instantaneously changed by every spike,
arriving at the respective �excitatory or inhibitory� synapse.
The linear filter dynamics in Eq. �2� corresponds to a kinetic
Markov scheme for the channel with two states �“open” and
“closed”� �16�; it has been found to be in good agreement
with experimental data �17�.

In Fig. 1, a visualization of Eqs. �1� and �2� is shown. The
plot was generated from the simulation of an example trajec-
tory with purely excitatory Poissonian shot-noise input. In
the upper panel, the times of spike arrival, tk, are indicated

with vertical bars. The mid panel shows the respective time
course of the excitatory conductance. Every time a spike
arrives, the conductance makes a jump of fixed size and then
relaxes toward zero until the next spike. In the lower panel,
we show the voltage response to the conductance changes.
With increasing conductance, the voltage goes smoothly to-
ward the excitatory reversal potential �in this example 0
mV�. Due to the multiplicative character, the amplitude of
the voltage increase is not fixed, but decreases with the dif-
ference V−Ee. Thus, the one spike arriving at a time where
the voltage is low, t�20 ms, has a larger impact than the
many spikes arriving at t�175 ms, where the voltage is
close to the excitatory reversal potential.

B. Time-dependent statistics of interest

The central quantity of interest in this paper is the nth
time-dependent moment, defined by

	V�t1� ¯ V�ti� ¯ V�tn�
, �tn � tn−1 � ¯ � t1 � 0� .

�3�

Here the average is taken over an ensemble of equilibrated
synaptic variables. This corresponds to the following initial
conditions:

V�t = 0� = V0, �4�

ge,i�t → − �� = y0, �5�

where y0 is an arbitrary initial value that does not affect the
dynamics for t�0 considered here. The rationale behind Eq.
�5� is that while clamping the voltage at time t=0, we cannot
control and will not influence the synaptic dynamics at the
same time.

Experimentally or in a simulation, the first step in mea-
suring the voltage moments would be to clamp the neuron’s
voltage to the value V0. After releasing the voltage clamp, the
trajectory is recorded. This has to be repeated many times to
get an ensemble of time-dependent voltage traces. The mo-
ments of this ensemble are an estimate of the time-dependent
moments of Eq. �1�. The estimation procedure is illustrated
in Fig. 2 for the time-dependent mean value in the case of
just one excitatory synapse with Poissonian shot noise. Indi-
vidual voltage traces �left panels� which all start at V�t=0�
=V0 are averaged, resulting in a curve that starts at V0 and
saturates in the long-time limit at the stationary mean voltage
	V
st. The latter value as well as the exact time course be-
tween V0 and 	V
st may reveal the multiplicative nature of
the conductance noise, for instance, by a nonexponential or
even a nonmonotonic run of the curve. We consider these
cases below in more detail.

Our method also allows for the determination of mem-
brane voltage statistics which do not require a repeated volt-
age clamp, i.e., which can be extracted from a long voltage
recording only. The first obvious statistics of this kind would
be the nth steady-state moment obtained by taking all times
in Eq. �3� equal and letting t go to infinity. Furthermore, the
stationary autocorrelation function can be expressed by the
second and first time-dependent moments.
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FIG. 1. �Color online� Example trajectories for the excitatory
conductance and the membrane voltage. Here, only an excitatory
Poissonian shot-noise input is present �no inhibition�. The conduc-
tance ge has jump discontinuities of fixed magnitude at the times of
spike arrival tk, whereas the voltage V changes smoothly with a
magnitude proportional to the distance from the excitatory reversal
potential V−Ee. The parameters used are re=150 Hz,
ce=0.2 mS /cm2, gL=0.05 mS /cm2, �e=5 ms, C=0.1 �F /cm2,
Ee=0 mV, and EL=−80 mV.
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C. Common approximations

For a Poissonian shot noise, one can, for high input rates
�re,i�e,i�1�, replace the point process in Eq. �2� with a con-
tinuous Gaussian process �3,11�. Under the same conditions,
one can furthermore neglect the first-order multiplicative
contributions of the input noise �9–11�. The resulting equa-
tions read �11�

C
dV

dt
= − �V − E0�g0 − �Ee − E0�geF�t� − �Ei − E0�giF�t� ,

�6�

�e,i
dge,i;F

dt
= − ge,i;F + �2�e,i	e,i
e,i�t� , �7�

where g0=gL+ge0+gi0, E0=1 /g0�EL+Ee+Ei�, and 
�t� is
Gaussian white noise with 	
�t�
=0 and 	
�t�
�t��
=��t− t��.
Furthermore, the new parameters ge,i0=ce,i�e,ire,i and 	e,i
=ce,i

��e,ire,i /2 are introduced, which are equal to the mean
and the variance of the original conductances, respectively.

The equations resemble a white-noise-driven current-
based model with the membrane time scale replaced by an
effective time scale �0=C /g0. Thus, this approximation is
referred to as effective time-constant approximation (ECA)
�9–11�. For this approximation, all moments can be com-
puted easily. The time-dependent mean value predicted by
the ECA is a simple exponential. With the initial condition
	V�0�
=V0, it reads

	V�t�
 = �V0 − E0�e�−g0/C�t + E0. �8�

Richardson and Gerstner stated that the ECA is valid for

	e,i/ge0,i0 = �2re,i�e,i�−1/2 � 1. �9�

The ECA can be considered as a first-order expansion of the
full dynamics in the small parameter equation �9�. We note
that the parameters ce, ci have to be small as well, i.e.,

ce,i � gL. �10�

Compare also the paper of Burkitt and Clark �18�, where an
expansion for small excitatory postsynaptic potential ampli-
tudes for additive synaptic noise has been introduced.

For later use, we would like to point out a remarkable
feature of the ECA in our particular setup �equilibrated con-
ductances�: the ECA and the original process will yield the
same short-time dynamics for the first moment as shown in
Appendix A. Specifically, we show there that

�d	V

dt
�

t=0
= �d	V
ECA

dt
�

t=0
. �11�

So looking at very short times after our initial clamping, the
mean of the voltage is well described by the ECA. Devia-
tions can be expected for moderate times and in the
asymptotic limit, i.e., for the steady-state mean value. The
latter has been calculated by Richardson and Gerstner �11� in
a perturbation calculation that goes beyond the ECA. Their
correction term reads

	V
� − E0 = − 
	e
2/g0

2�Ee − E0�
�e

�e + �0

+ 	i
2/g0

2�Ei − E0�
�i

�i + �0
� . �12�

In Sec. III, we compare the exact mean value for the full
dynamics to the prediction of the ECA equation �8� and
simulation results. Furthermore, the asymptotic values are
compared to the results of the perturbation expansion �11�
given above in Eq. �12�.

II. GENERAL THEORY

If the input noise is white �e.g., a Poisson shot noise� we
may write down an evolution equation for the voltage and
the conductance which attains the form of a master equation
with certain jump terms �3,19�. One can try to calculate the
time-dependent moments from such an equation—either by
explicit solution for the probability density itself �from
which any moment can, in principle, be calculated� or by
finding a �closed� set of equations for those moments.

Here we pursue a different approach which uses solely the
original stochastic differential equations and does not assume
that the input noise is white. Our idea is based on the fol-
lowing observation: the dynamics of the voltage as given in
Eq. �1� is just a linear problem if we consider the conduc-
tance noise as a time-dependent parameter. Hence given a
specific realization of the input noise, we can write down the
well-known solution for a first-order linear differential equa-
tion with time-dependent coefficients. However, if we want
to compute the statistics, we encounter averages of compli-
cated functions of the input conductance noise. The main
problem is to calculate these averages.

A. Equations for the exact nth order moments

In this section, we derive equations for moments of arbi-
trary order. To this end, we simplify Eqs. �1� and �2� by
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FIG. 2. �Color online� Estimate of the time-dependent moment
	V�t�
 �right panel� by averaging over an ensemble of trajectories
�left panels� all started at V�t=0�=V0. The asymptotic �stationary�
mean voltage 	V
st is indicated. For this example we chose a purely
excitatory input: a Poisson shot noise in the ge dynamics with rate
re=1000 Hz; other parameters: Ee=−65 mV, EL=−80 mV, �e

=3 ms, ce=0.05 mS /cm2, gL=0.05 mS /cm2, V0=−65 mV, and
C=1 �F /cm2.
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shifting the variable V by EL and renaming some parameters
as follows:

v = V − EL, ve,i = Ee,i − EL, v0 = V0 − EL, � =
gL

C
,

iapp =
Iapp

C
, ye,i�t� =

ge,i�t�
C

, 
e,i =
ce,i�e,i

C
. �13�

While most of our new parameters were chosen for the ease
of notation, the parameters 
e,i have a new meaning. They
are nondimensional products of ratios


e,i =
ce,i

gL

�e,i

C/gL
=

ce,i

gL

�e,i

�mem
, �14�

where the first factor is the ratio of the increment of the
conductance and the leak conductance of the unperturbed
system and the second factor is the ratio of conductance filter
time scale and membrane time constant �of the unperturbed
system�. This parameter is thus large for slow synapses and
large jump amplitudes.

By means of the transformation in Eq. �13�, we obtain the
following new equations:

dv
dt

= − �v − �v − ve�ye�t� − �v − vi�yi�t� − iapp, �15�

�e,i
dye,i

dt
= − ye,i + 
e,i �

�tke,i
�
��t − tk� . �16�

Equation �15� is a linear first-order differential equation with
time-dependent coefficients ye�t� and yi�t�. Such an equation
can be easily solved �see also �20�� and the formal solution
reads

v�t� = v0 exp�− �t − �
0

t

du�ye�u� + yi�u���
+ �

0

t

ds�veye�s� + viyi�s� + iapp�e−��t−s�

�exp�− �
s

t

du�ye�u� + yi�u��� . �17�

This can be written as

v�t� = v0e−�t−�0
t du�ye�u�+yi�u�� + �

0

t

ds�vee
−�s

t yi�u� d

ds
e−�s

tduye�u�

+ vie
−�s

tduye�u� d

ds
e−�s

tduyi�u� + iappe−�s
tdu�ye�u�+yi�u���e−��t−s�.

�18�

The nth time-dependent moment of this function reads

	v�t1�v�t2� ¯ v�tn�
 =��
m=1

n 
v0e−�tm−�0
tmdu�ye�u�+yi�u��

+ �
0

tm

ds�vee
−�s

tmyi�u� d

ds
e−�s

tmduye�u�

+ vie
−�s

tmduye�u� d

ds
e−�s

tmduyi�u�

+ iappe−�s
tmdu�ye�u�+yi�u���e−��tm−s���

�19�

�knowing all moments up to order n, the nth moment of V�t�
can be obtained via V�t�=v�t�+EL�. After a lengthy calcula-
tion �see Appendix B�, this expression reveals its key feature:
All averages share one structure, namely,

�exp�− �
j
�

sj

tj

duye,i�u��� , �20�

where the sj are the respective integration variables if the
factor stems from the inhomogeneous solution or zero if the
factor stems from the homogeneous solution. In words, we
have to average the exponential of a finite sum of integrals
over the conductance noise—once this average is known, the
moment can be computed in a straightforward way.

B. Evaluation of expression (20)

In the following, we show that expression �20� is strongly
connected to the characteristic functional of the input noise.
To this end, we have to rewrite the formal asymptotic solu-
tion of the linear filter equation for the incoming shot noise,
Eq. �16�, in terms of a Green’s function as follows:

ye,i�u� = �
−�

u

dt�

e,i

�e,i
e−�u−t��/�e,i
e,i�t�� �21�

=�
−�

+�

dt�Ge,i�u − t��
e,i�t�� , �22�

with 
e,i�t�=��ke,i�
��t− tke,i

�. Ge,i is defined as

Ge,i�u − t�� = H�u − t��

e,i

�e,i
e−u−t�/�e,i, �23�

where H�x� is the Heaviside function. The integral in Eq.
�20� can now be written as

�
j
�

sj

tj

duye,i�u� = �
−�

+�

dt�
�
j
�

sj

tj

duGe,i�u − t���
e,i�t��

�24�

�where we exchanged the order of integration� or

− �
j
�

sj

tj

duye,i�u� = i�
−�

�

duU�u;�tj�,�sj��
e,i�u� , �25�

with
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U�u;�tj�,�sj�� = i�
j
�

sj

tj

dt�Ge,i�t� − u� . �26�

Now we can insert Eq. �25� into Eq. �20� to obtain

�exp�− �
j
�

sj

tj

duye,i�u���
=�exp�i�

−�

�

duU�u;�tj�,�sj��
e,i�u��� . �27�

The structure of Eq. �27� is familiar. It is nothing else but the
characteristic functional �see, e.g., the book of Stratonovich
�21�� of the unfiltered input shot noise with a specific func-
tion defined by Eq. �26�.

�exp�− �
j
�

sj

tj

duye,i�u��� = �
e,i
�U�u;�tj�,�sj��� .

�28�

If we recapitulate the relation between the characteristic and
the generating functional �see, e.g., �21��,

�
e,i
�U�t�� = L
e,i

�eiU�t� − 1� , �29�

we also can connect Eq. �20� to the generating functional
L
e,i

�U�u��. This means, to write down an expression for an
arbitrary moment of the voltage fluctuations, it is sufficient
to know the generating or the characteristic functional of the
incoming unfiltered shot noise

�exp�− �
j
�

sj

tj

duye,i�u��� = �
e,i�i�
j
�

sj

tj

dt�Ge,i�t� − u�� ,

�30�

�exp�− �
j
�

sj

tj

duye,i�u���
= L
e,i�exp�− �

j
�

sj

tj

dt�Ge,i�t� − u�� − 1� . �31�

The filtering enters through the conductance’s Green’s func-
tion, Eq. �23�. Methods to calculate the respective function-
als can be found in �22�.

III. APPLICATION: TIME-DEPENDENT MEAN
FOR POISSONIAN INPUT

A. Analytical results

As an example, we calculate the exact mean value for
only excitatory Poissonian shot-noise input; this means yi
� iapp�0.

As explained above, we define the time-dependent mean
as the ensemble average over many time-dependent voltage
trajectories, each with initial value v0. The fluctuating con-
ductances, however, are assumed to be in a steady state,
without memory of an initial value. The mean of Eq. �18�
reads

	v�t�
 = v0e−�t	e−�0
t duye�u�
 + ve�

0

t

dse−��t−s� d

ds
	e−�s

tduye�u�
 .

�32�

The mean value appearing in this expression is a special case
of expression �20�. Because the generating functional for a
homogeneous Poisson process is known �21�,

L
e;T−,T+
�U�t�� = ere�T−

T+dtU�t�, �33�

we can make use of Eq. �31�. Expression �20� thus yields

	e−�s
tduye�u�
 = exp�re�

−�

+�

du�e−�s
tdt�Ge�t�−u� − 1�� . �34�

In the following, the argument of the exponential in Eq. �34�
is called fe.

fe�t,s� = re�
−�

+�

du�e−�s
tdt�Ge�t�−u� − 1� . �35�

As shown in detail in Appendix C, this expression depends
only on the time difference t−s, i.e., fe�t ,s�= fe�t−s� where
the explicit expression for fe reads

fe�t� = re�e�Ei�
e�e−t/�e − 1�� + e−
eEi�
e� − �

− e−
eEi�
ee
−t/�e� − ln�
e�et/�e − 1��� . �36�

Here Ei�x�=−�−x
� dte−t / t is the exponential integral function

and � denotes the Euler-Mascheroni constant, �
=0.577 215 66. . .. Putting everything together, we can write
down the exact expression for the mean value

	v�t�
 = v0 exp�− �t + fe�t��

− ve�
0

t

d� exp�− �� + fe����
dfe���

d�
, �37�

with fe given by Eq. �36�. We recall that the original dynam-
ics can be obtained by using the transformations Eqs. �13�.

For vanishing 
e, the solution approaches the ECA solu-
tion Eq. �8� as can be seen as follows. For 
e→0, the func-
tion fe�t� approaches �using expression �C9� given in Appen-
dix C and keeping only the leading-order term�

fe�t� → − re
et . �38�

Inserting this into Eq. �37� yields Eq. �8� using all the abbre-
viations introduced in Sec. I C and transforming back to the
original variables and parameters using Eqs. �13�.

B. Special case: Unfiltered input noise (�e\0)

To simplify the calculations, some authors have neglected
the finite time constant of the conductances and consider an
unfiltered shot noise, ge��tk

��t− tk� �see, for instance,
�15,20��. This case is contained in our calculations as the
limit of vanishing synaptic time constants �e while 
e
=ce�e /C is kept constant. Only the fe function, Eq. �36�, is
affected by this limit.

Due to the factor �e, in the brackets in Eq. �36� only terms
of order 1 /�e have to be taken into account. The only terms
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which do not become constant in this limit are the logarithm
and e−
eEi�
ee

−t/�e�, since the Ei�x� function has a logarithmic
divergence at x=0. For small arguments, the Ei�x� function
can be expanded according to Ei�x�� ln��x��+�. Performing
this limit, Eq. �36� turns into

fe,i;�e=0�t� = re�e−
e − 1�t . �39�

With Eq. �39�, Eq. �37� yields

	v�e=0�t�
 = v0e−�t − ve
re�1 − e−
e�

�
�e−�t − 1� , �40�

where �=�+re�1−e−
e� is the new effective decay time con-
stant. The solution is very similar to the ECA solution Eq.
�8�—indeed the latter is obtained if the exponential is ex-
panded in 
e to first order.

For vanishing 
e, �=�, whereas for large 
e, it ap-
proaches �+re. The asymptotic value of Eq. �40� depends
strongly on the input rate re. For very low rates, the
asymptotic value equals the leakage reversal potential. On
the other hand, for very high rates, the asymptotic value ap-
proaches the synaptic reversal potential.

Our result Eq. �40� is similar to that by Tuckwell �15� �cf.
Eq. �14� therein� who obtained the time-dependent mean of
the voltage using a probability-density approach. Tuckwell,
however, used another interpretation of the stochastic differ-
ential equation �the analog of an Ito interpretation for a sto-
chastic differential equation with white Gaussian noise�. Our
approach corresponds to the Stratonovich interpretation
which assumes that the input noise is not really a true white
noise but only the limit of a colored noise with negligibly
small correlation time �see Gardiner �23�, Sec. 6.5�. The dif-
ferences between the two interpretations are very small as
long as the amplitudes 
e,i are small �see Ref. �20��.

C. Conditions for a nonmonotonic mean

To investigate possible shortcomings of the ECA, it is
convenient to look for a nonmonotonic behavior for the exact
mean value �the ECA predicts a purely monotonic time
course; see Sec. I C�. This we may find from our analytical
result by setting �d	v�t�
 /dt�t=tm

=0, where tm is the instant of
the extremum. This leads to the equation

1 − e−A = A/b , �41�

with A=
e�1−e−tm/�e� �which is always positive for tm�0�
and b=re
e�ve−v0� /v0�. From the latter equation, we can
find conditions for the appearance of maxima in the time
course: By graphical interpretation of the equation, it be-
comes clear that the functions on the left-hand side and the
right-hand side of Eq. �41� can only intersect if the slope 1 /b
of the linear function is smaller than 1, i.e., b�1.

Furthermore, it can be shown that �1−e−A� /A is a mono-
tonically decreasing function of A. Since A�
e we obtain
from Eq. �41�,

1

b
=

1 − e−A

A
�

1 − e−
e


e
. �42�

Both conditions can be expressed in terms of v0. For the
necessary algebraic manipulations, we had to use �i� v0�0,

i.e., V0�EL and �ii� v0�ve, i.e., V0�Ee �both follow, for
excitatory input, from b�0 which is implied in the condition
b�1 derived above�. The conditions are summarized in the
following useful inequality:

re�1 − e−
e�ve

� + re�1 − e−
e�
� v0 �

re
eve

� + re
e
. �43�

In Appendix D, we show that it is always possible to find an
initial voltage that obeys this inequality.

Equation �41� is solved by

A = LW�− be−b� + b , �44�

where LW�x� denotes the Lambert W function �24� and b has
to be larger than one, as stated above �26�. Replacing A in
the latter equation by 
e�1−e−tm/�e� leads to an equation for
the position of the extremum as follows:

tm = − �e ln�1 −
1


e
�LW�− be−b� + b�� . �45�

For b�1 �leading to tm��e by making the absolute value of
the logarithm small�, this equation can be approximated by

tm � − �e ln�1 −
2


e

 1

re
e

v0�

v0 − ve
+ 1�� . �46�

The same result can be obtained by assuming small times
tm��e in Eq. �41�.

The first simple conclusion from Eq. �45� is that we have
to have a finite filter time �e in order to see an extremum at
a finite time—the two times tm and �e are directly propor-
tional to each other. This is also in accordance with the
white-noise case considered above where we obtained a
purely exponential decay without an extremum �i.e., the “ex-
tremum” is in this case at tm=0�.

We emphasize that the occurrence of a maximum is both
due to the multiplicative character of the noise and due to the
filtering, since neither the ECA �additive noise but filtered
input�, Eq. �8�, nor the unfiltered �but still multiplicative�
variant, Eq. �40�, allow for a nonmonotonic behavior.

D. Comparison to numerical simulations

In the following, 	V�t�
= 	v�t�
+EL using Eq. �37� is plot-
ted for different parameter sets. Our results are compared
with the prediction of the ECA and the asymptotic value
found by Richardson and Gerstner �11� as well as with nu-
merical simulations of Eqs. �1� and �2�. For this purpose, a
simple Euler integration scheme has been used. The Poisson
input was generated by drawing a uniformly distributed ran-
dom number between 0 and 1 in each time step. If the ran-
dom number was smaller than re�t the conductance was in-
creased by the value ce. Most of the parameters from our
standard set given in Table I are adopted from Richardson
and Gerstner �11�. Different parameter values are indicated
in the figure captions.

Figure 3�a� shows the exact result for the time-dependent
mean value together with simulation results and the predic-
tions of the ECA for this parameter set. All the curves agree
well for the comparably large initial value; there are small

LARS WOLFF AND BENJAMIN LINDNER PHYSICAL REVIEW E 77, 041913 �2008�

041913-6



differences in the asymptotic value, which cannot be seen in
the plot, because of the large voltage scale. The good
asymptotic agreement can be expected, because the conduc-
tance change caused by a single spike is small �smaller than
the leak conductance, in accordance with Eq. �10��. How-
ever, in the transient behavior qualitative deviations can still
be found. This is demonstrated in Fig. 3�b�, where the initial
value is set to approximately the steady-state mean value.
Now, the exact curve shows clearly a nonmonotonic time
curve.

The mean first increases �it follows the ECA curve for a
short period as expected from Eq. �11��, reaches a maximum,
and then drops toward an asymptotic value which is below
the initial value V0 as well as below the asymptotic value as

predicted by the ECA. We emphasize that the ECA predicts
always an exponential time course for the mean value and is
thus qualitatively wrong for this example. Despite the small
quantitative deviation �roughly 0.1 mV�, observing such a
maximum could be helpful for the estimation of parameters.
The prediction of the perturbation expansion of Richardson
and Gerstner �11� is in excellent agreement with the exact
asymptotic value.

Another striking difference is related to the choice of the
initial value. If the initial value for the ECA prediction
	V�t�
ECA would be reset to a new value somewhere on the
curve, V0→ 	V�t1�
ECA �note the reset indicated by a change
of color in the ECA curve in Fig. 4�, one would expect to
obtain essentially the same function, solely shifted by −t1.
Put differently, starting from a large negative value V� below
the asymptotic mean voltage E0, the curve passes through all
possible curves with initial values between V� and E0—there
is no new information in choosing another initial value in the
linear approximation. However, if this procedure is repeated
with the exact solution 	V�t�
, this is not the case. The curve
with the new initial value deviates from the original curve in
the beginning as clearly seen in Fig. 4: the reset curve shows
even a more pronounced maximum than the original curve.
However, the original function and the one obtained by a
reset voltage tend to the same asymptotic value.

From the above considerations, the question arises
whether one can find parameter sets where the quantitative
deviations are more pronounced. In Sec. I C, the limitations
of the ECA have been discussed. This can be used to identify
such sets. One example can be constructed by setting re to 20
Hz, ce to 2 mS /cm2, �e to 1 ms, and Ee to 0 mV in the
standard set; here both inequalities Eqs. �9� and �10� are not
obeyed. These values are still in the physiological range and
correspond to a neuron with comparably few synaptic con-
nections but a strong effect of a single incoming spike. In
this case, the asymptotic deviations become as large as 14
mV �see Fig. 5�a��. The deviations of the perturbation expan-
sion of Richardson and Gerstner �11� are smaller, however,
they still amount to approximately 4 mV. Remarkably, even

TABLE I. Standard parameter set.

Parameter Value

re 1000 Hz

�e 3 ms

ce 0.034 mS / cm2

Ee −65 mV

EL −80 mV

C 1 �F / cm2

gL 0.05 mS / cm2

V0 −50 mV

0.1 1 10
t [ms]

-70.05

-70

-69.95

<
V

>
[m

V
]

Simulation
Exact expression
ECA
As. perturbation

0.01 0.1 1
-70

-69.995

-69.99

app. 0.1 mV

(b)

0.1 1 10
t [ms]

-70

-65

-60

-55

-50

<
V

>
[m

V
]

Simulations
Exact expression
ECA
As. pertubation

(a)

FIG. 3. �Color online� Mean value as a function of time: theory
�solid line� according to 	V�t�
=EL+ 	v�t�
 and Eq. �37�; simulations
�symbols� performed as explained in the text; steady-state mean
�dashed line� according to the perturbation result Eq. �12� by Rich-
ardson and Gerstner �11�. Parameters are given in Table I; the initial
voltage in �b� is V0=−70 mV. The simulations are averaged over
105 trajectories �panel �a�� and 107 trajectories �panel �b��,
respectively.

0.1 1 10
t [ms]

-70.04

-70

-69.96

<
V

>
[m

V
]

Exact expression
ECA
Simulation
Exact expression (shifted)
ECA (shifted)
Simulation (shifted)

FIG. 4. �Color online� In addition to the curves from Fig. 3�b�,
the same quantities are plotted for a new initial value V0�
= 	V�20 ms�
 and time shifted by 20 s, respectively. All other pa-
rameters are identical with the ones from Fig. 3�b�. The modified
solution for the ECA lies exactly on the original one, whereas the
exact solutions differ strongly. However, the asymptotic values for
the exact solutions are identical.
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for this particularly large choice of the initial value, a tiny
maximum in the time course of the exact mean value can be
observed �see the inset in Fig. 5�a��. Again, by setting the
initial value close to the steady-state mean voltage, the maxi-
mum gets more pronounced �approximately 0.7 mV in am-
plitude; see the inset of Fig. 5�b�� and should be observable
in experiments.

Another question of interest is, whether the time predicted
for the maximum �under the assumption of small times com-
pared to the synaptic time scale�, Eq. �46�, is in agreement
with the exact curves in our examples. This is an important
point if one wants to use the position of the maximum as a
criterion for the estimation of a parameter �see also the dis-
cussions in Sec. IV�. In Fig. 3�b�, the maximum is at roughly
t=1.5 ms and Eq. �46� yields 1.46 ms for these parameters.
Here, 
e=0.102. For the last example �Fig. 5�a��, 
e=2. In
this case, the instance of the maximum predicted by Eq. �46�
is at tm=0.29. This is still close to the exact value t=0.36.

The accuracy of Eq. �46� was also checked against the
exact solution Eq. �45�. In Fig. 6 we show the approximate

and the exact values of tm as a function of the parameter 
e
for our examples from Figs. 3�b� and 5�a�. As can be seen, in
both cases a maximum can only occur for sufficiently strong

e �
e�0.1 in �a�, 
e�1.5 in �b��. The approximation of tm
works well for small 
e; for larger 
e the maximum may
vanish again �note the divergence for large 
e in Fig. 6�a�� or
saturate �Fig. 6�b��. For values of 
e in the physiological
range �see, e.g., circles in Fig. 6� our results indicate that Eq.
�46� provides a good approximation for the time instant of
maximal mean voltage.

IV. CONCLUSIONS AND DISCUSSIONS

We presented a method to calculate arbitrary moments for
the subthreshold fluctuations of a shot-noise-driven passive
neuron. In a simple example, parameter regions were identi-
fied where the effective time-constant approximation �ECA�
is not sufficient. In the example, the shot-noise input was
considered as Poissonian and only excitatory synapses have
been taken into account. The exact mean value for this ex-
ample was compared to predictions of the ECA and to simu-
lation results. Note that the evaluation of Eq. �37� by a C
program takes roughly 30 s, whereas the simulations have to
run for up to 40 h, depending on the desired accuracy.

We found systematic deviations from the predictions of
the ECA in �i� the asymptotic value of the voltage �e.g.,
whether it is smaller or larger than the initial voltage, cf. Fig.

0.01 0.1 1 10 100
t [ms]

-60

-55

-50

-45
<

V
>

[m
V

]
Simulations
Exact expression
ECA
As. perturbation

0.01 0.1 1

-50

-49.9
app.

14 mV

0.01 0.1 1 10 100
t [ms]

-60

-55

-50

-45

<
V

>
[m

V
]

Simulations
Exact expression
ECA
As. perturbation

0.010.1 1 10

-58.4

-58

app.
0.7 mV

(b)

(a)

FIG. 5. �Color online� Mean value as a function of time: theory
�solid line� according to 	V�t�
=EL+ 	v�t�
 and Eq. �37�; simulations
�symbols� performed as explained in the text; steady-state mean
�dashed line� according to the perturbation result Eq. �12� by Rich-
ardson and Gerstner �11�. Two examples for strong quantitative de-
viations from the ECA. The changed parameters are re=20 Hz,
ce=2 mS /cm2, �e=1 ms, and Ee=0 mV; the initial voltage in �b�
is V0=−58.4 mV. The simulations are averaged over 105 trajecto-
ries �main graphs� and over 106 trajectories �insets�, respectively.

0.1 0.102 0.104ε
e

0
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15
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FIG. 6. �Color online� The approximation Eq. �46� �dashed
lines� and the exact result Eq. �45� for tm, plotted vs 
e. The param-
eters are taken for panel �a� from Fig. 3�b� and for panel �b� from
Fig. 5�a�.
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5�, �ii� the time course which can be nonmonotonic, and �iii�
the dependence on a reclamping of the voltage �cf. Fig. 4�.
For a small and purely excitatory drive, we could identify
conditions leading to a nonmonotonic mean as a function of
time. Preliminary results indicate that also the time-
dependent standard deviation can show extrema and that
strong quantitative deviations of the ECA can appear. As the
ECA replaces the original shot noise by a Gaussian process,
it neglects the nontrivial higher moments of the shot noise.
Thus, the difference between the exact solution and the ECA
should be even larger for higher moments, as was shown by
Richardson and Gerstner �11� for the skew of the steady-state
voltage distribution.

The extrema which can show up in the time course of the
mean value may also be helpful for the estimation of param-
eters. In the case of the ECA, there are only two effective
parameters, namely, the effective reversal potential E0 and
the effective timescale �0. With the equation for the position
of the maximum, Eq. �46�, we have an additional condition
for parameter estimation. If now extrema are discovered also
in higher moments, they might allow for the determination of
even more parameters. As an example, we used Eq. �46� to
determine the synaptic time scale from simulations of the full
dynamics at our standard parameter set �Table I� with an
inital voltage of −70 mV. To have realistic conditions, we
used an ensemble of 62 500 trajectories and a simulation
time of 8 ms. This leads to a total time for one measurement
of less than 9 min. To obtain an estimate for the statistical
error, we estimated �e ten times from different runs of the
simulation. The mean over the ten runs was �3.2�0.4� ms.
The error for one measurement is indicated. The true value
for �e is 3 ms and the relative error therefore amounts to
13%.

In this paper we have assumed a passive membrane, i.e.,
we have neglected any voltage-dependent conductances and
thus a spiking mechanism. Clearly, spiking would distort the
voltage statistics, overriding some if not all of the subtle
effects we found in this paper. Our results apply only to
situations where no or almost no spiking occurs. This is the
case, for instance, if the main voltage-dependent channels are
chemically blocked or if the neuron is strongly hyperpolar-
ized by an additional current. Last but not least, it also cor-
responds to a weak input, insufficient to cause firing or to a
dominating inhibitory input.

Another neglected feature is the spatial extension of the
neuron. We assume that the postsynaptic potential �PSP�
does not change qualitatively on its way from the dendrite to
the soma. In many neurons, for instance motoneurons in the
rat’s spinal cord �25�, the dendritic membrane is largely pas-
sive and the PSP is solely reduced in amplitude and is low-
pass filtered. This could be accounted for in our model by a
change in the synaptic time scale �e,i and the amplitude ce,i;
an effective bandpass filtering could be included by a higher-
order synaptic filter.

Our method calls for many more applications. An inter-
esting question is whether for excitatory and inhibitory input
being present, the time-dependent mean value can show two
or more extrema and how parameter values can be extracted
in this more complicated case.

Moreover, our method can be also used to calculate the
autocorrelation function of the voltage fluctuations. This

function can be obtained experimentally from a long voltage
trajectory �without repeated reclamping of the voltage� and
thus simplifies the comparison to experiments.

Another important point for further extensions of this so-
lution concerns the choice of the filter function. The function
Ge,i in Eqs. �30� and �31� is the Green’s function of the filter
dynamics equation �2�. This implies that another �more real-
istic� filter could be included simply by replacing the func-
tion Ge,i by the Green’s function of the new filter dynamics.
The other parts of Eqs. �30� and �31� will not be affected. A
linear filter which takes into account the finite rise time of
the conductance is, for example, the � function, which is
proportional to t exp�−�t�. In general, more realistic filters
possess more complicated Green’s functions. This in turn
will lead to more complicated integrals in the final expres-
sion, for instance, in those appearing in the time-dependent
mean value.

Finally, we emphasize that the formulas derived in Sec. II
are valid for both inhibitory and excitatory input, and can be
used for all kinds of stationary input point processes, as long
as their generating or characteristic functional can be calcu-
lated. This permits the use of more realistic �i.e., correlated�
shot noise, which is a particularly exciting subject of future
research.

APPENDIX A: THE MEAN AT SHORT TIMES

Here we show that the ECA dynamics around the initial
value is completely equivalent to the full dynamics �Eqs. �1�
and �2��, i.e., we prove Eq. �11�. At t=0, V=V0 and the
statistics of the voltage is independent of the conductances.
Thus, the mean of Eq. �1� can easily be taken, yielding

�d	V

dt
�

t=0
=

1

C
�− �V0 − EL�gL − �V0 − Ee�	ge
 − �V0 − Ei�	gi
� .

�A1�

The mean of Eq. �6� for t=0 yields �where we omit all terms
with zero mean�

�d	V
ECA

dt
�

t=0
=

1

C
�− �V0 − E0�g0�

=
1

C
�− �V0 − EL�gL − �V0 − Ee�ge0

− �V0 − Ei�gi0� . �A2�

By construction, ge0,i0= 	ge,i
, and thus Eq. �11� results.

APPENDIX B: EVALUATION OF THE EXPRESSIONS
FOR THE EXACT MOMENTS

In this Appendix, we show that the crucial step to calcu-
late the moments is to evaluate expression �20�. To keep the
expressions readable, we do this only for moments up to
second order, i.e., the autocorrelation function. The explicit
definition reads
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	v�t�v�t + ��
 =�
v0e−�t exp�− �
0

t

du�ye�u� + yi�u��� + �
0

t

ds�veye�s� + viyi�s��e−��t−s� exp�− �
s

t

du�ye�u� + yi�u����
�
v0e−��t+�� exp�− �

0

t+�

du��ye�u�� + yi�u���� + �
0

t+�

ds��veye�s�� + viyi�s���e−��t+�−s��

�exp�− �
s�

t+�

du��ye�u�� + yi�u������
=�v0

2e−��2t+�� exp�− �
0

t

du�ye�u� + yi�u�� − �
0

t+�

du�ye�u� + yi�u����
+�v0�

0

t+�

ds�e−��2t+���veye�s�� + viyi�s���exp�− �
0

t

du�ye�u� + yi�u�� − �
s�

t+�

du�ye�u� + yi�u����
+�v0�

0

t

dse−��2t+���veye�s� + viyi�s��exp�− �
s

t

du�ye�u� + yi�u�� − �
0

t+�

du�ye�u� + yi�u����
+��

0

t

ds�
0

t+�

ds�e−��2t+�−s−s���veye�s� + viyi�s���veye�s�� + viyi�s���

�exp�− �
s

t

du�ye�u� + yi�u�� − �
s�

t+�

du��ye�u�� + yi�u����� . �B1�

To do the averaging and obtain expression �20�, the exponentials have to be split into a product of terms which only contain
either ye or yi, and the conductances multiplying the exponential have to be replaced by derivatives. Thus, the averaging has
to be done over terms like

d

ds
exp�− �

s

t1

duye�u� − �
s�

t2

duye�u�� d

ds�
exp�− �

s

t1

duyi�u� − �
s�

t2

duyi�u�� . �B2�

If we now assume the excitatory and inhibitory noise to be uncorrelated, we can write the expectation value of the product as
the product of expectation values as follows:

� d

ds
exp�− �

s

t1

duye�u� − �
s�

t2

duye�u�� d

ds�
exp�− �

s

t1

duyi�u� − �
s�

t2

duyi�u���
=

d

ds�exp�− �
s

t1

duye�u� − �
s�

t2

duye�u��� d

ds��exp�− �
s

t1

duyi�u� − �
s�

t2

duyi�u��� . �B3�

Clearly, this expression is of the form given in
Eq. �20�.

APPENDIX C: EVALUATION OF fe

With some simple shifts of the integration variables,
namely, t�→ t�= t�−s and u→u�=u−s, one can see
that fe only depends on the difference of the arguments as
follows:

fe�t,s� = re�
−�

+�

du�e−�s
tdt�Ge�t�−u� − 1�

= re�
−�

+�

du��e−�0
t−sdt�Ge�t�−u�� − 1� = fe�t − s� .

�C1�

The index e will be suppressed throughout the following.
According to Eq. �35�, we have to calculate
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f�t� = r�
−�

�

du�e−�0
t dt�G�t�−u� − 1� , �C2�

with G�t�−u� given by Eq. �23�. To do the outer integration,
we have to know the value of the exponential’s argument, in
the following called I, for all u:

I = − �
0

t

dt�H�t� − u�



�
e−�t�−u�/�. �C3�

Because of the Heaviside function H�x� it is convenient to

split the integration over u into three integrals over u�0,
0�u� t, and u� t. For I we obtain

I = �
eu/��e−t/� − 1� u � 0


�e−�t−u�/� − 1� 0 � u � t

0 u � t .
� �C4�

We can now write for f ,

f�t� = r��−�

0

du�e�eu/��e−t/�−1� − 1�

=I1

+ �
0

t

du�e��e−�t−u�/�−1� − 1�

=I2

+ �
t

�

du�e0 − 1�

=0

� .

�C5�

The remaining task is to calculate the two integrals. For this purpose, we use the following relation:

�x

dx� exp��e�x�� =
1

�
Ei��e�x� . �C6�

I2 yields

I2 = ��Ei�
� − Ei�
e−t/���e−
 − t . �C7�

For I1, there is a difficulty, caused by the logarithmic divergence of Ei�x� at x=0. Therefore, we write it as the limit of a proper
integral as follows:

I1 = lim
C→�

�
−C

0

du�e
eu/��e−t/�−1� − 1� =
Eq. �C6�

lim
C→�

��Ei�
�e−t/� − 1�eu/�� − u�−C
0 = � lim

C→�

Ei�
�e−t/� − 1�� − Ei�
�e−t/� − 1�eC/�� −

C

�
� .

�C8�

For very large C, the factor e−C/� and thus the argument of
the Ei� � function gets very small. This function can be ex-
panded around zero as follows:

Ei�x� �
x�1

ln��x�� + � , �C9�

with � being the Euler-Mascheroni constant, �
=0.577 215 66. . ..

Thus,

I1 = ��Ei�
�e−t/� − 1�� − lim
C→�


ln�
�1 − e−t/��e−C/�� + � +
C

�
��

= ��Ei�
�e−t/� − 1�� − lim
C→�


ln�
�1 − e−t/��� + � −
C

�
+

C

�
��

= ��Ei�
�e−t/� − 1�� − ln�
�1 − e−t/��� − �� . �C10�

Altogether, f reads

f�t� = �r�Ei�
�e−t/� − 1�� + �Ei�
� − Ei�
e−t/���e−


− ln�
�et/� − 1�� − �� . �C11�

APPENDIX D: CONDITIONS FOR THE NONMONOTONIC
MEAN

By examining the conditions, one can see that one can
always find an initial value which fulfills the inequalities
�43�: By using the fact that both the right-hand side and the
left-hand side of the inequality �43� share the structure

F�A� =
reveA�
e�

� + reA�
e�
, �D1�

which is increasing strictly monotonically with A, and using
that

�1 − e−
e� � 
e ∀ 
e � 0, �D2�

one can easily show that the left-hand side of the inequality
�43� is always smaller than the right-hand side. This proves
that it is always possible to find an initial value which leads
to a nonmonotonic time course of the mean.
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